The triangle $\triangle P Q D$ is isosceles $(|D P|=|D Q|$ due to being tangents), therefore we have $\angle D Q P=\angle Q P D$ on the other hand $\angle D Q P=\beta+\angle Q S P$ (outer angle of triangle $\triangle P Q R$). Considering $\angle Q P D=\alpha+\angle R P D$, we would have $\alpha=\beta$ if $\angle Q S P=\angle R P D$. To show $\angle Q S P=\angle R P D$, we prove that the triangles $\triangle D P R$ and $\triangle D P S$ are similar.

Note: 2 triangles are similar if they have 1 angle of the same measure and the ratio of the enclosing triangles sides is equal.
Both triangles share the angle $\angle R D P$ and the ratio of the enclosing triangles sides is $\frac{|D P|}{|D S|}$ and $\frac{|D R|}{|D P|}$.

The tangent-secant theorem applied on the outer circle yields $|D P|^{2}=|D R| \cdot|D S|$, therefore $\frac{|D P|}{|D S|}=\frac{|D R|}{|D P|}$. Together we have equal ratios and an angle of equal measure, hence the triangles $\triangle D P R$ and $\triangle D P S$ are similar.

