Since since the set we are minimizing over is a curve, a parametrization will reduce the problem to finding the minimum of function of one variable. The circle equation $x^{2}+y^{2}=1$ of the cylinder can be parametrized by $x(t)=\cos (t)$ and $y(t)=\sin (t)$, due to $z=1-x+y$ we have $z(t)=1-x(t)+y(t)$ and hence a complete parametrization. So minimizing $f(x, y, z)=x+2 y+3 z$ over the curve is equivalent to minimizing $f(t)=f(x(t), y(t), z(t))=\cos (t)+2 \sin (t)+3 \cdot(1-\cos (t)+\sin (t))=3-2 \cos (t)+5 \sin (t)$ over $[0,2 \pi]$ With $f^{\prime}(t)=2 \sin (t)+5 \cos (t)$ and $f^{\prime}(t)=0$ we get $\tan (t)=\frac{\sin (t)}{\cos (t)}=-\frac{5}{2}$ and $t=k \cdot \pi-\arctan \left(\frac{5}{2}\right)$. This yields us 2 candidates for a minimum in $[0,2 \pi]:\left\{\pi-\arctan \left(\frac{5}{2}\right), 2 \pi-\arctan \left(\frac{5}{2}\right)\right\}$.

We verify the minimum using $f^{\prime \prime}(t)=2 \cos (t)-5 \sin (t)$. :
$f^{\prime \prime}\left(\pi-\arctan \left(\frac{5}{2}\right)\right) \approx f^{\prime \prime}(1.9513027042)=-5.385164807<0$
$f^{\prime \prime}\left(2 \pi-\arctan \left(\frac{5}{2}\right)\right) \approx f^{\prime \prime}(5.092895358)=5.385164807>0$
So $f(t)$ has a minimum at $t=2 \pi-\arctan \left(\frac{5}{2}\right)$, which means the curve has a minimum at
$\left(x\left(2 \pi-\arctan \left(\frac{5}{2}\right)\right), y\left(2 \pi-\arctan \left(\frac{5}{2}\right)\right), z\left(2 \pi-\arctan \left(\frac{5}{2}\right)\right)\right)=\left(\frac{2}{\sqrt{29}}, \frac{-5}{\sqrt{29}}, \frac{\sqrt{29}-7}{\sqrt{29}}\right) \approx(0.371,-0.928,-0.300)$ and ist value is $f\left(2 \pi-\arctan \left(\frac{5}{2}\right)\right)=3-\sqrt{29} \approx-2.385$
The following graphics illustrate the situation:

