
Since since the set we are minimizing over is a curve, a parametrization will reduce the problem to finding the 
minimum of function of one variable. The circle equation 122 =+ yx  of the cylinder can be parametrized by 

)cos()( ttx =  and )sin()( tty = , due to yxz +−= 1  we have )()(1)( tytxtz +−= and hence a complete 
parametrization. So minimizing zyxzyxf 32),,( ++=  over the curve is equivalent to minimizing 
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We verify the minimum using )sin(5)cos(2)( tttf −=′′ . :
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The following graphics illustrate the situation:


