Tougher Trig Series and the landen-dioid constant.
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Proof. This series seems to be difficult. landen relied heavily on discussions of a similar series on AoPS Math
Forum.
Define:
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The limits follow from the fact that |sin(2z)| and |sin(2z — 1)| are periodic functions with irrational
period 7 and, therefore, the average of the sum will converge to the reciprocal of the period times the integral
over the period.
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Equation @ follow by rearranging terms of (5) or by summation by parts, which is equivalent. The first
term on the right of @ has limn — oo = 0 by (4)). It remains to show the the sum in @ converges. Similar
manipulations of G(n) yield:
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In order to get a better estimate of sums involving |sin(x)| we can use its nicely convergent Fourier series
and some useful trigonometric identities:
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Substituting @ into and then interchanging the order of summation and using We obtain:
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From Hata’s theorem(1992) we know that for P and @ natural we have, except for a finite number of cases:
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Applying Hata’s theorem to and summing the series, we get that:
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Now there is a rather subtle trick from |AoPS Math Foruml By subtle I mean I did not follow it at first. We
can choose m in (18]) for each n to get a tight bound on |F'(n)|. We can do this because the truncation error
is taken into account explicitly. So, take m = O (n1/8).
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Applying the estimate from to F(n) and F(k) in (6], the sum on the right of (6] converges absolutely.
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By similar arguments on G(n) we obtain:
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Now if we subtract from and combine the indices, we get:

2n . 2n
. —1)¥|sin(k 2 . —1)k
nlLII;O Z w - ; nlggo Z ( k‘) = Leven - Lodd (22)
k=1 k=1
2n .
—1)F 2
nll—>n(;lo Z w = _; ln(2) + Leven - Lodd (23)
k=1
Therefore, the sum in converges. |b00m'

dioid (IRC nick) has calculated 10° terms of this sum in groups of 10 and then applied the Levin-u
transformation for acceleration and got -0.4050635483148443 as accelerated sum, error 0.0000000000000296.
This is the best estimate so far of the famous dioid-landen constant.
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