
landen’s theorem. The series

S =
+∞∑
n=1

n−2−sin(n) (1)

diverges.

Proof. After an initial investigation we will bound a sequence Sm. The terms of Sm are subseries of (1)
made with Lm j , an infinite subsequence of {1, 2, . . . ,+∞} with m constant and j = 1, 2, . . . ,+∞:

S > Sm =
+∞∑
j=1

L
−2−sin(Lm j)
mj (2)

Then we will show that limm→∞ Sm is unbounded and hence (1) diverges. To make a term of Sm we want
to extract from (1) a subseries in which sin(n) is close to −1 in a known way.

We first find an integer rm which has the property that sin(rm) is close to −1. From the theory of
continued fractions (see theorems 10 and 11 here) all the rational convergents of the continued fraction
represention of any irrational number, α, {pk/qk : k ∈ {0, 1, 2, . . . ,+∞}}, are “close” to α and satisfy these
inequalities, giving lower and upper rational bounds on α:

For k even: 0 < α− pk/qk < 1/(qkqk+1). (3)

For k odd: 0 < pk/qk − α < 1/(qkqk+1). (4)

Let α = π/2. Make an increasing sequence from all odd qk. Successive qk are relatively prime so there are
infinitely many odd qk. We select the mth odd qk from this sequence. Using the parity of k, multiply the
applicable equation (3) or (4) by qk:

|qkπ/2− pk| < 1/qk+1 (5)

Taking the sin of both sides of (5), squaring, using trigonometric identities and applying Taylor’s theorem
approximation to bound the sine and the square root:

cos2(pk) < sin2(1/qk+1)
1− cos2(pk) > 1− sin2(1/qk+1)

sin2(pk) > 1− 1/qk+1
2

| sin(pk)| > 1− 1/(2qk+1
2)

Next we take rm to be either pk or −pk so that sin(rm) is negative.

sin(rm) < −1 + 1/(2qk+1
2) (6)

Next we construct an upper and a lower approximation to π/2. From (5) we have an lower(upper) approxima-
tion pk/qk, depending on the parity of k, with pk+1/qk+1 being respectively an upper(lower) approximation
of higher accuracy.

|π/2− pk/qk| < 1/(qkqk+1); |π/2− pk+1/qk+1| < 1/(qk+1qk+2) (7)

If we multiply the bounds in (7) by 4 we get an upper and a lower approximation to 2π. We can get integer
approximations to a multiple of 2π, {4pk, 4pk+1}, by multiplying the first equation in (7) by qk and the
second equation by qk+1. Define sm to be the numerator of the lower rational approximation to 2π and tm
to be the numerator of the upper rational approximation to 2π. sm and tm will both have an error less that
4/qk+1, whether we multiplied the approximations to 2π by qk or qk+1.

Define for each m the sequence Lm j of positive integers:

Lm 1 =

{
rm + tm if rm(mod 2π) < 3π/2
rm + sm if rm(mod 2π) > 3π/2

(8)
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Since |rm| < max(sm, tm), Lm 1 < 2 max(sm, tm). (9)

For terms in Lm j with j > 1 define:

Lm j =

{
Lm j−1 + tm if Lm j−1(mod 2π) < 3π/2
Lm j−1 + sm if Lm j−1(mod 2π) > 3π/2

(10)

Lm 1(mod 2π) = 3π/2 + u1 with |u1| < 4/qk+1 (11)

This is because the error in the choice of sm or tm is canceled in part by the error of opposite sign in rm.
Likewise, each succeeding Lm j is steered by the choice of sm or tm to keep its (mod 2π) close to 3π/2 also.
The errors do not grow:

Lm j(mod 2π) = 3π/2 + uj with |uj | < 4/qk+1 (12)

Next return to (2):

Sm =
+∞∑
j=1

L
−2−sin(Lm j)
m j (13)

Getting bounds on the exponent of (13)

2 + sin(Lm j) = 2− cos(uj) = 1 + 2 sin2(uj/2) (14)

2 + sin(Lm j) < 1 + 8/qk+1
2 (15)

The Lm j are not equally spaced as j increases. However:

Lm j+1 − Lm j < max(sm, tm) and by induction

Lm j < Lm 1 + (j − 1) max(sm, tm) < (j + 1) max(sm, tm), using (9).

max(sm, tm) ≤ 4pk+1 < 8qk+1, using π/2 < 2 (16)

Combining these approximations we get:

Sm >
+∞∑
j=2

(8qk+1j)−1−8/qk+1
2

(17)

Sm >

∫ +∞

j=2

(8qk+1j)−1−8/qk+1
2
dj = (8qk+1)(1−8/qk+1

2)/(28/qk+1512) (18)

As m increases, the values of qk+1 increase without bound and the lower bounds of Sm increase without
bound so (1) diverges. ¡b00m!
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