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Typical partial fractions problems would be ones like∫
x3 + 4

(x2 − 1)(x2 + 3x + 2)
dx∫

x3 + 2x− 1
(x2 − x− 2)2

dx∫
dx

(x6 − 1)4∫
dx

(64x4 + 81)3∫
dx

(x8 − 16)2

The partial fractions algorithm as taught is inferior. Computer algebra sys-
tems use superior methods, some of which are usable by humans, and others
less so.
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1 Reduction of Numerators

Assume throughout that (n(x), d(x)) = 1.
When f(x) = n(x)

d(x) with deg(n) ≥ deg(d) a reduction in degree is immediate

by polynomial division. If n(x) = q(x)d(x) + r(x) then
∫ n(x)

d(x) dx =
∫

q(x)dx +∫ r(x)
d(x)dx. Suppose that deg(n) = deg(d) − 1. Then n(x) = Kd′(x) + r(x) for

some constant K, and
∫ n(x)

d(x) dx =
∫ r(x)

d(x)dx + K log(d(x)). So one may assume
that deg(n) ≤ deg(d)− 2.
Suppose d(x) is even, so that d(x) = de(x2). Then n(x) = xno(x2)+ne(x2) and
one may carry out the decomposition∫

n(x)
d(x)

dx =
∫

no(x2)
de(x2)

xdx +
∫

ne(x2)
de(x2)

dx

=
1
2

∫ x2
no(y)
de(y)

dy +
∫

ne(x2)
de(x2)

dx

Suppose d(x) is odd, so that d(x) = xdo(x2), and n(x) = ne(x2) + xno(x2).
Then ∫

ne(x2) + xno(x2)
xdo(x2)

dx =
1
2

∫ x2
ne(y)
do(y)

dy

y
+
∫

no(x2)
do(x2)

dx

More generally it’s possible to reduce rational functions in a similar manner.∫
n(x)
d(x)

dx =
1
2

∫ (
n(x)
d(x)

+
n(−x)
d(−x)

)
dx +

1
2

∫ (
n(x)
d(x)

− n(−x)
d(−x)

)
dx

=
∫

Re(x2)dx +
1
2

∫ x2

Ro(y)dy

where

Re(x2) =
1
2

(
n(x)
d(x)

+
n(−x)
d(−x)

)
xRo(x2) =

1
2

(
n(x)
d(x)

− n(−x)
d(−x)

)
but without some sort of simpler common denominator, this isn’t often actually
a simplification (though it may be when radicals become involved). Sometimes
it can be useful when d(x) is given in a factored form where the bulk of the degree
is consumed by even factors, or when d(x) = (ax2 + bx + c)n after substituting
y = x + b

2a .
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2 Reduction of Denominators to Squarefree

d(x) is squarefree if (d(x), d′(x)) = 1; otherwise d(x) =
∏

dk(x)k with each
dk(x) squarefree, which decomposition is called the squarefree factorization.
In that case r(x) = (d(x), d′(x)) =

∏
k≥2 dk(x)k−1 so q(x) = d(x)

r(x) =
∏

dk(x),
and (q(x), r(x)) =

∏
k≥2 dk(x) and finally

d1(x) =
d(x)

r(x)(q(x), r(x))

Applying this process recursively to r(x) yields the remaining terms. Remem-
bering (q(x), r(x)) at one stage to use it as q(x) for the next may be useful.
If the denominator is not given in factored form, this process will determine
what’s necessary. If it is, merely group the factors appropriately. In either case,
the squarefree factorization is available.
Let d(x) = u(x)dm(x)m where dm(x) is the highest power divisor of d(x)
in its squarefree factorization, and u(x) its associated quotient. Note that
(u(x)d′m(x), dm(x)) = 1 and use the extended Euclidean algorithm to deter-
mine a(x), b(x) so that

n(x) = a(x)u(x)d′m(x) + b(x)dm(x)

Dividing by d(x) one obtains

n(x)
d(x)

=
a(x)d′m(x)
dm(x)m

+
b(x)

u(x)dm(x)m−1

=
a(x)d′m(x)
dm(x)m

− 1
m− 1

· a′(x)dm(x)
dm(x)m

+
1

m− 1
· (m− 1)b(x) + a′(x)u(x)

u(x)dm(x)m−1

= − 1
m− 1

(
d

dx

a(x)
dm(x)m−1

)
+

1
m− 1

· (m− 1)b(x) + a′(x)u(x)
u(x)dm(x)m−1∫

n(x)
d(x)

dx =
1

m− 1

∫
(m− 1)b(x) + a′(x)u(x)

u(x)dm(x)m−1
dx− 1

m− 1
· a(x)
dm(x)m−1

which reduction may be applied recursively until d(x) is squarefree.
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3 Integration with Squarefree Denominators

Assume d(x) has no rational roots or linear factors. If it has any, the correspond-
ing factors are easily subtracted out: limx→a

n(x)
d(x) (x− a) provides the necessary

coefficient.
All the reductions of the first section apply as well, so one may further assume
deg(n) ≤ deg(d)− 2 and evenness and oddness are all eliminated.
The Chinese Remainder Theorem supplies a decomposition of n(x)

d(x) using the fac-
tors of d(x) recorded during its squarefree factorization or otherwise supplied
by the problem.

n(x) =
∑

k

(n(x) mod dk(x)) ·

((
d(x)
dk(x)

)−1

mod dk(x)

)
d(x)
di(x)

The mod denotes the least residue, and the inverse is the multiplicative inverse
in the appropriate quotient group. For larger factors, this is more work than the
matrix computations for traditional partial fractions. When the dk(x) are at
most quadratic, the polynomials are appropriately small and divide and conquer
strategies work well for computing products moddk(x).
From here, it’s largely hoped one has the full factorization. If not, more can be
done, but it’s not really usable by humans and involves computing resolvents
and the like. Often textbook problems supply factorizations of denominators
down to repeated quadratic and linear factors in Q[x].
Quadratic denominators uniformly fall down to the deg(n) = deg(d)− 1 reduc-
tion of the first section where not arctangents or logarithms of linear factors for
irrational roots, so squarefree decompositions into quadratic factors suffice.
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4 Examples

Example 1 ∫
x3 + 4

(x2 − 1)(x2 + 3x + 2)
dx

Subtract out an appropriate linear combination of reciprocals of the highest
powers of linear divisors of the denominator.

d(x) = (x− 1)(x + 2)(x + 1)2

lim
x→1

x3 + 4
d(x)

(x− 1) =
5

22 · 3

lim
x→−1

x3 + 4
d(x)

(x + 1)2 = −3
2

lim
x→−2

x3 + 4
d(x)

(x + 2) =
4
3

x3 + 4
(x− 1)(x + 2)(x + 1)2

=
5
12
· 1
x− 1

+
1
12
· 7x2 − 13x− 38
(x− 2)(x + 1)2

=
5
12
· 1
x− 1

+
4
3
· 1
x + 2

− 3
4
· x + 3
(x + 1)2

=
5
12
· 1
x− 1

+
4
3
· 1
x + 2

− 3
2
· 1
(x + 1)2

− 3
4
· 1
x + 1∫

x3 + 4
(x− 1)(x + 2)(x + 1)2

dx =
5
12

log(x− 1) +
3
2
· 1
x + 1

+
4
3

log(x + 2)− 3
4

log(x + 1)

Note here that the limits are only used for the highest powers of a linear divisor
of d(x); the derivatives for other residues are too much work.
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Example 2 ∫
x2 + 2x− 1

(x2 − x− 2)2
dx

Use the recurrence to reduce the denominator to squarefree.

x3 + 2x− 1 = a(x)(2x− 1) + b(x)(x2 − x− 2)

x3 + 2x− 1 ≡ 1
8

mod 2x− 1

≡ −9
4
b(x) mod 2x− 1

b(x) ≡ − 1
18

mod 2x− 1

x3 + 2x− 1 ≡ 5x + 1 mod x2 − x− 2
≡ (2x− 1)a(x)

(5x + 1)(2x− 1) ≡ 7x + 19 mod x2 − x− 2

≡ (2x− 1)2a(x) mod x2 − x− 2

≡ (4x2 − 4x− 1)a(x) mod x2 − x− 2

≡ 9a(x) mod x2 − x− 2

x3 + 2x− 1 =
(

7x + 19
9

+ t(x2 − x− 2)
)

(2x− 1)− x2 − x− 2
18

−1 =
(

19
9
− 2t

)
(−1)− −2

18

t =
1
2

a(x) =
1
2
x2 +

5
18

x +
10
9

b(x) = − 1
18

x3 + 2x− 1 =
(

1
2
x2 +

5
18

x +
10
9

)
(2x− 1)− x2 − x− 2

18∫
x3 + 2x− 1

(x2 − x− 2)2
dx =

∫ − 1
18 + (x + 5

18 )
x2 − x− 2

dx−
1
2x2 + 5

18x + 10
9

x2 − x− 2

=
1
9

∫
9x + 2

x2 − x− 2
dx− 1

18
· 9x2 + 5x + 20

x2 − x− 2

9x + 2 =
9
2
(2x− 1) +

13
2∫

x3 + 2x− 1
(x2 − x− 2)2

dx =
1
2

∫
2x− 1

x2 − x− 2
dx +

13
18

∫
1

x2 − x− 2
dx− 1

18
· 9x2 + 5x + 20

x2 − x− 2

=
13
18

∫
1

x2 − x− 2
dx +

1
2

log(x2 − x− 2)− 1
18
· 9x2 + 5x + 20

x2 − x− 2

=
1
2

log(x2 − x− 2)− 13
27

arctanh
(

2x− 1
3

)
− 1

18
· 9x2 + 5x + 20

x2 − x− 2
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Alternatively, substitute y = x− 1
2 and use evenness of the denominator.∫

x3 + 2x− 1
(x2 − x− 2)2

dx =
∫

(y + 1
2 )3 + 2y

((y + 1
2 )2 − y − 5

2

dy

= 2
∫ x− 1

2 8y3 + 12y2 + 22y + 1
(4y2 − 9)2

dy

= 2
∫ x− 1

2 4y2 + 11
(4y2 − 9)2

(2y)dy + 2
∫ x− 1

2 12y2 + 1
(4y2 − 9)2

dy

= 2
∫ 1

4 (2x−1)2 4z + 11
(4z − 9)2

dz + 2
∫ x− 1

2 12y2 + 1
(4y2 − 9)2

dy

= 2
∫ 1

4 (2x−1)2 ( 1
4z − 9

+
20

(4z − 9)2

)
dz + 2

∫ x− 1
2 12y2 + 1

(4y2 − 9)2
dy

= 2
(

1
4

log(4z − 9)− 5
4z − 9

) ∣∣∣∣∣
z= 1

4 (2x−1)2

+ 2
∫ x− 1

2 12y2 + 1
(4y2 − 9)2

dy

=
1
2

log(x2 − x− 2)− 5
2(x2 − x− 2)

+ 2
∫ x− 1

2 12y2 + 1
(4y2 − 9)2

dy

12y2 + 1 = 3(4y2 − 9) + 28∫
x3 + 2x− 1

(x2 − x− 2)2
dx =

1
2

log(x2 − x− 2)− 5
2(x2 − x− 2)

+
∫ x− 1

2
(

56
(9− 4y2)2

− 6
9− 4y2

)
dy

y =
3
2

tanh
(

2
3
z

)
z =

3
2

arctanh
(

2x− 1
3

)
∫

x3 + 2x− 1
(x2 − x− 2)2

dx =
1
2

log(x2 − x− 2)− 5
2(x2 − x− 2)

+
∫ 3

2 arctanh( 2x−1
3 )

(
56
81

cosh
(

2
3
z

)2

− 2
3

)
dz

=
1
2

log(x2 − x− 2)− 5
2(x2 − x− 2)

+
(

14
27

sinh
(

4
3
z

)
− 26

81
z

) ∣∣∣∣∣
z= 3

2 arctanh( 2x−1
3 )

=
1
2

log(x2 − x− 2)− 5
2(x2 − x− 2)

+
14
27

sinh
(

2 arctanh
(

2x− 1
3

))
− 13

27
arctanh

(
2x− 1

3

)
=

1
2

log(x2 − x− 2)− 5
2(x2 − x− 2)

− 7
18
· 2x− 1
x2 − x− 2

− 13
27

arctanh
(

2x− 1
3

)
=

1
2

log(x2 − x− 2)−
14
9 x + 5

2 −
7
18

x2 − x− 2
− 13

27
arctanh

(
2x− 1

3

)
=

1
2

log(x2 − x− 2)− 1
9
· 7x + 19
x2 − x− 2

− 13
27

arctanh
(

2x− 1
3

)

The two results differ by a constant.
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Example 3 ∫
dx

(x6 − 1)4

Reduce the denominator to squarefree via the integral recurrence, then re-
solve into quadratic factors.
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Example 4 ∫
dx

(64x4 + 81)3

Reduce the denominator to squarefree via the integral recurrence, then re-
solve into quadratic factors.
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Example 5 ∫
dx

(x8 − 16)2

Reduce the denominator to squarefree via the integral recurrence, then re-
solve into quadratic factors.

10


