Lemma.

If k is a field, $f \in k[x]$ irreducible and $g \in k[x]$, then every irreducible factor of $f(g(x)) \in k[x]$ has degree divisible by $\operatorname{deg} f$. In particular, the number of irreducible factors of $f(g(x))$ is at most $\operatorname{deg} g$.

Pf.

If α is a root of an irreducible factor $p(x)$ of $f(g(x))$ then we have field extensions: $k(\alpha) \supseteq k(g(\alpha)) \supseteq k$. So $\operatorname{deg} p=[k(\alpha): k]=[k(\alpha): k(g(\alpha))][k(g(\alpha)):$ $k]=[k(\alpha): k(g(\alpha))] \cdot \operatorname{deg} f$, since $g(\alpha)$ is a root of f. Lemma follows.

Solution to the Bonus Problem.

If $\left(x^{2}+x\right)^{2^{n}}+1=r(x) s(x)$ for some $r, s \in \mathbb{Q}[x]$ then by the above lemma r and s are irreducible and have degree 2^{n}. We can assume that r, s are monic. Note that $(-1-x)^{2}+(-1-x)=x^{2}+x$, so $r(x) s(x)=r(-1-x) s(-1-x)$. By irreducibility and because both r, s have even degree, either $r(x)=$ $r(-1-x)$ and $s(x)=s(-1-x)$, or $r(x)=s(-1-x)$ and $s(x)=r(-1-x)$. In the latter case, $\left(x^{2}+x\right)^{2^{n}}+1=r(x) r(-1-x)$ and setting $x=-1 / 2$, the RHS is a square of a rational number whereas the LHS clearly isn't. In the first case, r and s are both polynomials in $x^{2}+x$. Since $x^{2}+x$ is transcendental over \mathbb{Q}, and by irreducibility of $x^{2^{n}}+1 \in \mathbb{Q}[x]$, we must have either r or s equal to $\left(x^{2}+x\right)^{2^{n}}+1$.

To see that $r(x)=r(-1-x)$ implies $\exists p(x) \in \mathbb{Q}[x]$ such that $r(x)=p\left(x^{2}+x\right)$, note first that $r(0)=r(-1)$, so $r(x)-r(0)$ is divisible by $x(x+1)=x^{2}+x$. So $r(x)=a_{0}+\left(x^{2}+x\right) r_{1}(x)$ for some $r_{1} \in \mathbb{Q}[x]$. Now $a_{0}+\left(x^{2}+x\right) r_{1}(-1-x)=$ $r(-1-x)=r(x)=a_{0}+\left(x^{2}+x\right) r_{1}(x)$ so that $r_{1}(-1-x)=r_{1}(x)$. So $r_{1}=a_{1}+\left(x^{2}+x\right) r_{2}$ for some $r_{2} \in \mathbb{Q}[x]$. Proceed inductively (on the degree).

